
c

- _ _

N89- 16322 / 6 ' 7 0 6 7 A

Ada* and Cyclic Runtime Scheduling

P h i l i p E. Hood
SofTech Inc.

Abstract

6 An ~mportant issue that must be faced while introducing Ada into the real
t h e world is efficient and predictable runtime behavior. One of the most
effective methods employed during the traditional design of a real time system
is the cyclic executive. Thia paper examines the role cyclic schedullng might
Play in an Ada application in terms of currently available implementations and
in terms of implementations that might be developed specifically to support
real time system development.

The cyclic executive solves many of the problems faced by real time
designers, resulting in a system for which it is relatively easy to achieve
appropriate timing behavior. Unfortunately a cyclic executive carries with it
a very high maintenance penalty over the lifetime of the software that i t
schedules. Additionally, these cyclic systems tend to be quite fragile when
any aspect of the system changes.

This paper presents the findings of an ongoing SofTech investigation into
Ada methods for real time system development. Section 1 discusses cyclic
scheduling in general - what it is and why i t is used. Section 2 examines how
cyclic scheduling might be applied to Ada real time systems. Methods of
introducing cyclic schedulers into applications without violating Ada
semantics is explicitly discussed. Several classes of cyclic schedulers will
be evaluated on their compatibility with the Ada world. Section 3 briefly
examines how future systems might use a cyclic scheduler without paying the
high price levied upon current systems. The topics covered include a
description of the costs involved in using cyclic schedulers, the sources of
these costs, and measures for future systems to avoid these costs without
giving up the runtime performance of a cyclic system.

1.0 Cyclic Executive Description -
A cyclic executive provides a mechanism for enforcing a predetermined

ordering of processing events in a system. All processing to be performed is
arranged within a schedule of finite duration. This schedule is repeated at a
specified rate called the major cycle. The major cycle is broken down into a
number (usually a power of two) of equal minor cycles. Each minor cycle is
assigned a processing frame containing a list O E processing elements
(routines) to be performed during the associated minor cycle, An example of
the basic cyclic executive structure is shown in Figure 1.

Ada is a registered trademark of the U.S. Government (AJPO)

D.3.3.1

Figure 1 - An Example Cyclic Executive Structure

D . 3 . 3 . 2

1
I

Although a l l CYOliO OXocutlvor rhar8 the structure we have described,
th8y vary in rlmort OV8ry othor arpout, Many types of cycllc executives have
b80n d8v8lOpod to rupport variour appllcrtlonr, and each one Is dlfferent from
the last. 80a8 O f these variations, much 111 mode changes, varying frame
assignments and handling frame overruns, are discussed below.

1.1 Mode Changes

One of the advantages of a cyclic executive is that the static schedule
can be tuned to optimize the system's timing performance for the expected load
conditions. The load on the system, however, may not be constant. A change
in the system load may cause the cyclic executive to allocate run time in a
very inefficient manner (a job with a long allocated run time may have little
or no processing to perform),

To solve this problem mode changes are introduced into the system. A
mode change can change both the processing to be performed and the cyclic
schedule. The more variation possible in the loading of the system, the more
mode changing operations will be necessary. Each mode change is expensive in
terms of new coding and tuning that must be performed and in terms of the
damage to the program structure that always accompanies tuning operations.

1.2 Varying Frame Assignments

Schedule variations do not always require a mode change. If the
variations can be localized to one frame, then that frame can use a local
scheduler to resolve the problem. This solution of course, requires the
overhead of some run time scheduling. Moreover, every possible scheduling
possibility must be verified during system tuning.

1.3 Handling Frame Overruns

The greatest amount of variation between cyclic executives lies in the
handling of frame overruns. We will consider the following four methods, b y
no means a complete list (many variations and hybrids exist): overruns
ignored, overruns logged, overruns suspended, and overruns terminated.

1.3.1 Overruns Ignored

In some systems the problem of frame overrun can be adequately addressed
during system debugging; these systems may choose to ignore overruns during
runtime. The designer 1s responsible for verifying that overruns can never
occur. This type of executive is typical of systems with either very simple
software or over-confident designers.

D . 3 . 3 . 3

* '18382 .Ovorrunr Logged ' (' I - J,',
' . b , 1 . .., !

is appropriate
when' 8 "framo overruns, This
approach resultr in asvery realistic oxocutivo for any rystem in which tuning
issues can bo adequately addressed, In a properly tuned cyclic executive
application, ftamer rhould not bo overrunning. Thur i t this type of scheduler
is inadequate, it implies that a cyclic schedule is not capable of providing a
reliable rchedule for that application and must be enhanced.

' T h h itratogy ir w e d in lrysIomr whore no runtime action
Tho overrun ir rocordod for handling o f t line,

I
8 L

I
!

1

1.3.3 Overruns Suspended

When a frame overruns in this type of system, it is suspended and the
next frarar is allowed to start on time. When ther8 is free time the suspended
frame is allowed to complete.

This method greatly complicates data access in the application software.
A built-in efficiency of a cyclic executive is the SynChrOnltAtiOn implied by
static frame assignments. Additional synchronization is normally unnecessary
during shared data references. When frame suspension is introduced, the
implied synchronization is disrupted, and consequently references to shared
data must include the appropriate synchronization mechanisms.

1.3.4 Overruns Terminated

When overruns occur in a system using this strategy, the overruning frame
is terminated. It is restarted from the beginning at its next scheduled start
time. This mechanism avoids the synchronization problems of the suspension
mechanism but introduces its own problems. Software components that could
possibly overrun frame boundaries must be written very carefully so that
valuable data is not lost. There is also a potential problem with data that
is incompletely updated when the frame is terminated - if this data is used by
other components, serious problems could arise.

2 . 0 Ada Implementation 02 Cyclic Executives -
Some varieties of cyclic executive fit very well into Ada, others do not

map so naturally into the language.

The basic cyclic structure is fairly easy to implement in Ada. Mactaren
(11 and Hood 121 show how to write simple cyclic executives in Ada. The basic
cyclic scheduler for this type of cxecutlve is shown in Figure 2. This type
of executive ignores the issues of varying loads and overrunning Erames.

D.3.3.4

-.? : R " i . \

with Frame-Package1
package body Executive is

task Cyclic-Scheduler i r

end Cyclic-Scheduler;

entry Minor-Cycle-Tickt
for Minor-Cycle-Tick use at BIL00054t;

task body Cyclic-Scheduler is
begin

loop --forever
accept Minor-Cycle-Tick;
Frame-Packaqe.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame-Package.Frame-3;
accept Minor-Cycle-Tick;
Frame-Packaqe.Frame-4;

end loop!
end Cyclic-Scheduler1

end Executive;

Figure 2. A Simple Cyclic Executive

0.3.3.5

The Simple 8tructure can bo easily expanded to incorporate mod* changes
and vatiable tram0 assignmentr. ~ i g u r e 3 showr A cyclic executiva with mode
Changing. Each modo i s represented by a complete list of frames to be
scheduled in that bode. At the beginning of each major cycle, the executive
decider which schedule to run. Varying frame assignments require no change to
the Cyclic schedulerr instead a local scheduler is created in the varying
frame as ehown in Figure 4.

Overruns can be logged by adding a task to receive the periodic interrupt
and to check whether or not the previous schedule has completed. This type of
scheduler is shown in Figure 5.

None of the cyclic variations discussed so far has been difficult to
implement in Ada. The last two variations, namely overrun suspension and
termination, are considerably more difficult. In both cases, these executives
could only be written if they were heavily supported by the underlying r u n
time system.

The only asynchronous scheduling point provided by Ada occurs when an
interrupt is received, so this fact must be used in both the Suspension &.Id
termination variations. Asynchronous response to an interrupt is not
guaranteed by the Ada specification, however any Ada implementation that has
any value in the development of real time systems have to provide asynchronous
interrupt handling. The only ways to terminate an executing piece of Ada code
are either to raise an exception or to abort the task, Asynchronous
exceptions are not allowed in the Ada semantics, leaving only the abort
statement. The abort statement is not guaranteed to stop the aborted task
from executing at any particular time. Therefore, a frame termination
executive could be written in Ada only if the underlying implementation
guarantees the immediate termination of aborted tasks.

The overrun suspension executive has similar problems. The only way to
ensure the new frame will have precedence over the old one is to introduce the
new frame as a task with higher priority than the old frame task. This
technique works for the frames in a given major cycle, but when the first
frame is reintroduced at the beginning of the next major cycle, it must wait
for all the frames from the previous major cycle to complete before starting.
This behavior is clearly not desirable. In order to implement this type of
executive in Ada, the implementation must provide some sort of dynamic
priority mechanism. Standard Ada priorities are not dynamic, thus a
additional priority scheme must be introduced. These new priorities can not
interfere with the workings Of the Ada priority system but can be used to
assign priority to tasks that either have no standard Ada priority,
o r have the same standard priority.

relative

In general, these executives require more control over the processing
resources than can be obtained Using a single thread of control (single Ada
task). The resulting cyclic executive must be implemented using Ada tasking
€acilities. Ada tasking facilities, however, lack support for the primitive
(and often dangerous) functions necessary for these variations of the cyclic
executive.

D.3.3.6

with FrameJackage;
package body Executive 1s

task Cgclic-Schedul*r is

end Cyclic-Scheduler;

entry Micx-Cycle-Tick;
for Mlnor_Cyclr-Tlck use at 81100054@;

task body Cyclic-Scheduler is
type Mode-Typo is (Mode-1 Modr-2) ;
Mode: Mode-Type := Mode-1;

begin
loop --forever
cage Mode is

when kiGde-1 =>
accept Minor-Cycle-Tick;
Frame-Package.Frame-1;
accept Minor-Cycle-Tick:
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame-Package.Frame-3;
accept Minor-Cycle-Tick;
Frame--Packdge. Frame-4 t

accapt Minor-Cycle-Tick;
Frame-Package.Frame-It
accept Minor-Cycle-Tick;
Frame-Package.Frame-2:
accept Minor-Cycle-Tick;
Fra~o-Package.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;

when Mode-2 =>

end casei
end loop;

end Cyclic-Scheduler;
end Execut ive ;

Figurc 3. A Cyclic Executive with Mode Changing

D.3.3 .7

4 4
I

‘ G

I

'. tark 'CycliclSchedulet is
'entry Minor-Cycle-Tick;
for Minor-Cycle-Tick ure a t 8i1000541;

end Cyclic-Scheduler a

task body Cyclic-Scheduler ir

begin
Statu88 Frame-Package,Statur-Type I= Frame_Package.Status-Type'Firrti

loop --forever
accept Minor-Cycle-Tick;
Fraare-Package.Frame-1i
accept Minor-Cycle-Tick;
Frame-Package.Frame-2;
accept Minor-Cycle-Tick;
Frame_Package.Frame-3i
accept Minor-Cycle-Tickt
Frame-Package.Frame-4 (Status);

end loop;
end Cyclic-Scheduler1

end Executive;

separate (Frame-Package)
procedure Frame-4 (Status I in Status-Type) 1s
begin

0
C1SQ Status iS

whim Good 8 ,

Application-1;
Application-Zt

Application-1:
when others =>

end case8
end Frame-4;

Figure 4 . A Cyclic Executfve with Frame Level Scheduling

D.3.3.8

..". ..., *.

with drror-Handling_Pickrgr;
with Pram@-Packagrt
paCkag8 body EX8CUtiVO i8

' task Pick-Handlrr i 8
rnt r y Clock-P ic k ;
tor Clock-Tlck use a t 811000541r

f rnd Pick-Handlrt;
1

. task Cyclic-Scheduler is

end Cyclic-Scheduler;
entry Minor-Cycle-Tick;

&ask kuidg pld&JimL?ua d.s

loop -- forever
accept Clock-Tick;
select

else

end select;

Cyclic-Scheduler.Minor_Cyclr_Tick;

Error-Handling-Package.Log-Overrun;

end loop;
end Tick-Handler8

task body Cyclic-Scheduler is
begin

loop --forever
accept Minor-Cycle-Tick;
Frame-Package.Frame-1;
accept Minor-Cycle-Tick;
Frame-Package.Fcame-28
accept Minor-Cycle-Tick;
Frame-Package.Frame-38
accept Minor-Cycle-T'.ck;
Frame_Package.Frame_~~

end loop;
end Cyclic-Scheduler:

end Execut ive;

Figure 5. A Cyclic Executive with Overrun Logging

ORIGINAL PAGE S
OF rOOR Q U A l l N D. 3.3.9

1.0 Avoidinq the Cost & Cvclic Schedulinq

Cyclic scheduling ir very costly over the lifetime of a software System.
The reason is very rimpler cyclic systems require software to be developed in
modules according to their time consumption rather than according to
functional coneiderations. Two phase8 o i development are totally dominated by
the timing structure of a cyclic executlve; detailed design/coding stage and
tuning. During detailed design, frame assignments are designed and coded
SPecfficallY to fit into their assigned time slots. Functionality is traded
back and forth between routines and frames, depending on where there is time.

Tuning can be though of as temporal debugging, during which timing errors
are found and corrected. The correction methods include dividing up existing
routines and shifting functionality between frames and routines. The end
result io a very fragile schedule which meets the timing requirements but
suffers several drawbacks: minor changes are likely to have sufficient impact
on the schedule to require complete system retuning. Functional components
are so dispersed that to understand any single component requires knowledge of
the entire system. The structure of the software has been totally lost and
maintenance efforts can only degrade thn structure further. Finally, one has
a system in need of constant and expensive maintenance.

In order to reduce the cost of this type of system, the creation of the
cyclic structure must be separated from the cleation and maintenance of the
software components. Modern software engineering techniques can be applied to
the system development and maintenance issues, with an extra step added to
derive a cyclic implementation from a more general design. The code developed
would be structured according to functional rather than timing considerations.
The timing of the system would move from the detailed design and coding steps
into a new precompilation step.

This extra step might be implemented as a machine-assisted (programmer
directed) set of program transformations which parallel the cyclic design
process that would normally take place during the software design. The
transformational sequence as well as the the untransformed source would be
save for future rederivations after necessary program maintenance is
performed.

A tool assisted tuning system need not be limited to cyclic
transformations. While there may always be a class of real time systems
requiring cyclic runtime performance, there is an equally large number of
systems that do not require such extreme measures. Many of these systems
would benefit from the flexibility of an Ada style runtime scheduler. This
type of scheduling allows more flexibility in dealing with runtime loadinq
variations, and is far more robust when maintenance changes are made. These
systems still require tuning, although not to the same extent. For these
systems, other types of tuning transformations can be made available, such as
replacing monitor tasks with semaphores OK simplifying groups of tasks using
program inversion techniques [31. By applying these techniques, a system can
be tuned until the appropriate level of predictability and efficiency has been
reached,

D. 3.3.10

ORiQlPlAC PAGE IS
OF POOR QUACITY

-**--#.e I . . ' " . "

Conclusion

There will always bo system that have a need for the runtime performance
Of cyclic scheduling. Many of the cyclic scheduling models Lit well within
the Ada language. In order for the cost of a cyclic system to be brought
under control, new methods aurt be developed to for their creation. These
methods ought not be limited to tho creation of cyclic systems; however, they
should provide a more general approach to the development of real time
systemsr with cyclic scheduling as one of many options €or achieving real time
performance.

References

111 MacLaren *Evolving toward Ada in Real Time Systems," SIGPLAN Notices,
1980

[2] Hood, Philip and Grover, Vinod, Desisninq Real Time Systems
Technical Report 1123-1, SofTech Inc., Waltham, MA, January 1986.

[3] Rajeev, S., 9 Applying Ada to Real-Time Systems: The Inversion
Technique and Some Examples, Technical Report TP 148, SofTech, Inc.,
Waltham, MA, March 1983.

Adaf

(4 1 Rajeev, S., Certain Optimizations Ada Tasking Implementations

[SI Gonralezr M.J., Jr., "Deterministic Processor Scheduling,"

Technical Report 9074-2, SofTech, Walthamr MA, January 1983.

Computinq Surveys, Vol. 9 . , No. 3 . , September 1977.

D. 3.3.11

